skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hersch-Green, Erika I"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Polyploidy commonly occurs in invasive species, and phenotypic plasticity (PP, the ability to alter one's phenotype in different environments) is predicted to be enhanced in polyploids and to contribute to their invasive success. However, empirical support that increased PP is frequent in polyploids and/or confers invasive success is limited. Here, we investigated if polyploids are more pre‐adapted to become invasive than diploids via the scaling of trait values and PP with ploidy level, and if post‐introduction selection has led to a divergence in trait values and PP responses between native‐ and non‐native cytotypes. We grew diploid, tetraploid (from both native North American and non‐native European ranges), and hexaploidSolidago giganteain pots outside with low, medium, and high soil nitrogen and phosphorus (NP) amendments, and measured traits related to growth, asexual reproduction, physiology, and insects/pathogen resistance. Overall, we found little evidence to suggest that polyploidy and post‐introduction selection shaped mean trait and PP responses. When we compared diploids to tetraploids (as their introduction into Europe was more likely than hexaploids) we found that tetraploids had greater pathogen resistance, photosynthetic capacities, and water‐use efficiencies and generally performed better under NP enrichments. Furthermore, tetraploids invested more into roots than shoots in low NP and more into shoots than roots in high NP, and this resource strategy is beneficial under variable NP conditions. Lastly, native tetraploids exhibited greater plasticity in biomass accumulation, clonal‐ramet production, and water‐use efficiency. Cumulatively, tetraploidS. giganteapossesses traits that might have predisposed and enabled them to become successful invaders. Our findings highlight that trait expression and invasive species dynamics are nuanced, while also providing insight into the invasion success and cyto‐geographic patterning ofS. giganteathat can be broadly applied to other invasive species with polyploid complexes. 
    more » « less
  2. Abstract PremiseIncreased genome‐material costs of N and P atoms inherent to organisms with larger genomes have been proposed to limit growth under nutrient scarcities and to promote growth under nutrient enrichments. Such responsiveness may reflect a nutrient‐dependent diploid versus polyploid advantage that could have vast ecological and evolutionary implications, but direct evidence that material costs increase with ploidy level and/or influence cytotype‐dependent growth, metabolic, and/or resource‐use trade‐offs is limited. MethodsWe grew diploid, autotetraploid, and autohexaploidSolidago giganteaplants with one of four ambient or enriched N:P ratios and measured traits related to material costs, primary and secondary metabolism, and resource‐use. ResultsRelative to diploids, polyploids invested more N and P into cells, and tetraploids grew more with N enrichments, suggesting that material costs increase with ploidy level. Polyploids also generally exhibited strategies that could minimize material‐cost constraints over both long (reduced monoploid genome size) and short (more extreme transcriptome downsizing, reduced photosynthesis rates and terpene concentrations, enhanced N‐use efficiencies) evolutionary time periods. Furthermore, polyploids had lower transpiration rates but higher water‐use efficiencies than diploids, both of which were more pronounced under nutrient‐limiting conditions. ConclusionsN and P material costs increase with ploidy level, but material‐cost constraints might be lessened by resource allocation/investment mechanisms that can also alter ecological dynamics and selection. Our results enhance mechanistic understanding of how global increases in nutrients might provide a release from material‐cost constraints in polyploids that could impact ploidy (or genome‐size)‐specific performances, cytogeographic patterning, and multispecies community structuring. 
    more » « less
  3. Tanentzap, Andrew J (Ed.)
    Experiments comparing diploids with polyploids and in single grassland sites show that nitrogen and/or phosphorus availability influences plant growth and community composition dependent on genome size; specifically, plants with larger genomes grow faster under nutrient enrichments relative to those with smaller genomes. However, it is unknown if these effects are specific to particular site localities with speciifc plant assemblages, climates, and historical contingencies. To determine the generality of genome size-dependent growth responses to nitrogen and phosphorus fertilization, we combined genome size and species abundance data from 27 coordinated grassland nutrient addition experiments in the Nutrient Network that occur in the Northern Hemisphere across a range of climates and grassland communities. We found that after nitrogen treatment, species with larger genomes generally increased more in cover compared to those with smaller genomes, potentially due to a release from nutrient limitation. Responses were strongest for C3grasses and in less seasonal, low precipitation environments, indicating that genome size effects on water-use-efficiency modulates genome size–nutrient interactions. Cumulatively, the data suggest that genome size is informative and improves predictions of species’ success in grassland communities. 
    more » « less
    Free, publicly-accessible full text available December 11, 2025